
Proceedings of the 5th Workshop on South and Southeast Asian NLP, 25th International Conference on Computational Linguistics, pages 65–73,
Dublin, Ireland, August 23-29 2014.

A Dictionary Data Processing Environment and Its Application in
Algorithmic Processing of Pali Dictionary Data for Future NLP Tasks

Dipl. Inf. Jürgen Knauth

Trier Center for Digital Humanities
Universitätsring 15

54296 Trier
Germany

knauth@uni-trier.de

David Alfter
Trier Center for Digital Humanities

Bollwerkstrasse 10
54290 Trier
Germany

s2daalft@uni-trier.de

Abstract

This paper presents a highly flexible infrastructure for processing digitized dictionaries and
that can be used to build NLP tools in the future. This infrastructure is especially suitable for
low resource languages where some digitized information is available but not (yet) suitable

for algorithmic use. It allows researchers to do at least some processing in an algorithmic way
using the full power of the C# programming language, reducing the effort of manual editing
of the data. To test this in practice, the paper describes the processing steps taken by making

use of this infrastructure in order to identify word classes and cross references in the
dictionary of Pali in the context of the SeNeReKo project. We also conduct an experiment to

make use of this data and show the importance of the dictionary. This paper presents the
experiences and results of the selected approach.

1 Introduction

Pali (also written Pāli, Paḷi or Pāḷi) is a dead language from the group of Middle Indo-Aryan languages
(Burrow, 1955: 2). Despite its status as dead language, Pali is still widely studied because many of the
early Buddhist scriptures were written in Pali (Bloch, 1970: 8). It is also said that Buddha himself
spoke Pali or a closely related dialect (Pali Text Society; Thera, 1953: 9).

SeNeReKo is a joint research project of the Trier Center for Digital Humanities (TCDH) and the
Center of Religious Studies in Bochum (CERES), Germany. This project aims to process the Pali
Canon – which at the same time is the only texts left of Pali – in order to research religious contacts
between the early Buddhists and other religious groups and cultures.

To achieve this we aim to develop NLP tools and process this data as we believe that the concepts
of interest will be found in direct verbal expressions within this corpus. From the information we aim
to extract we intend to create networks that allow analysis of these concept.

Until now such an attempt has never been made. Even processing Pali using computer algorithms
has not been in the focus of the scientific community yet. As we researchers in SeNeReKo try to
change this we now focus on a basic building block for NLP tools: Building a machine readable
dictionary that allows building sophisticated NLP tools in the long run. To attempt this a digitized
copy of the dictionary of William and Davids (1997) has been provided to our team by the University
of Chicago.

2 Related Work

As Pali is a low resource language not much work has yet been done in this field, especially not with
the dictionary data. The only researchers we know of that have tried to use this data is a team of the
This work is licensed under a Creative Commons Attribution 4.0 International Licence. Page numbers and proceedings footer
are added by the organisers. Licence details: http://creativecommons.org/licenses/by/4.0/

65

University of Copenhagen. Their goal was to create a new digitized version of this dictionary.
Unfortunately they did not succeed and stopped after having edited three letters of the Pali alphabet.
To our knowledge we are the first to work with this data again.

With good success a language somehow similar to Pali has been addressed in the past: Sanskrit
(Hellwig 2009). Nevertheless attempts to adapt these tools to Pali have not been possible due to the
lack of a suitable dictionary.

Regarding NLP tools addressing Pali some experiments have already been performed by the
members of the SeNeReKo project team and especially by David Alfter. Nevertheless no work could
yet reach a state of publication due to the lack of a suitable digital dictionary that would serve as a
basis for NLP tasks.

3 Technical infrastructure

As it is the nature of digital humanities projects like SeNeReKo a variety of researchers is involved
into the process of processing and editing data and developing methods for the research intended. In
SeNeReKo this involves Pali experts, Sociologists, Computer Linguists and Scientists (and
Egyptologists for performing work with other text corpora not addressed by this paper.) An
infrastructure that aims at enabling collaboration is therefore mandatory. This section describes key
aspects of the infrastructure developed.

3.1 Dictionary Server

Each dictionary entry is to be understood as a single document which is self-contained and structured.
A dictionary is considered to be a collection of documents.

Being self-contained all information relevant to each individual entry is stored in the same
document. Each of these entries must be structured to provide information in a clearly defined way for
NLP tools in the future.

To store the dictionary data a MongoDB data base is used. This NoSQL data base not only supports
such kind of data model it also provides the necessary flexibility to define and change the internal
structure of such dictionary document in the future as needed.

For ease of use a NodeJS-based dictionary server has been implemented that provides user
authentication and high level data base operations addressing searching, inserting, updating and
deleting specific to the requirements of a dictionary.

The pairing of NodeJS and MongoDB is reasonable because of performance reasons: MongoDB
receives and returns data not in XML, but in JSON notation; and as NodeJS provides its functionality
through a highly efficient JavaScript engine JSON data can directly be processed without any need of
conversion.

For collaboration purposes a REST-API has been implemented with compatibility and
interoperability in mind. As we aim for algorithmic processing of data and want to enable researchers
to easily implement custom NLP tools that make use of the dictionary data independently from each
other. To support this as best as possible a Java and C# library has been implemented as well as an R
module for convenience.

As it is the nature of dictionary data to consist of a larger amount of individual entries, classical
request-response communication models, as they would be imposed by HTTP, are unsuitable for
processing (in the sense of algorithm based editing). Following that approach would result in notable
performance degradation. Fortunately single processing steps as we intend them for pattern matching
and enriching of dictionary entries have largely no relation between individual entries. Therefore the
dictionary server provides an interface for bulk communication: A large amount of individual protocol
function calls can be packed into a single package. As the server processes them in parallel and returns
the response to all requests again in a single response we are capable of overcoming the problem of
summation of network latencies and end up with good performance in updating data.

3.2 Data Processing Tool

In SeNeReKo we need to process the original - near plaintext - dictionary entries. This data is inserted
into the dictionary server beforehand and then various analysing and processing steps need to be taken.
To perform these, we implemented a processing environment that makes developing of individual

66

processing units very easy, gives high performance and great transparency about data modifications
intended by these units.

Our data processing tool is a programming environment for creating small processing units in C#.
Data management issues do not need to be addressed: This is done by the programming environment
automatically. The individual units are compiled to native .Net code for speed of processing. On
execution data from the dictionary server is retrieved and passed through these units and – if necessary
– sent back to the server after modifications have been applied. Together with the bulk processing
supported by the dictionary server the compilation of the code units speeds up any processing. By
directly making use of C# this approach we achieve great flexibility: It allows making use of all kinds
of existing libraries if desired and enables researchers to implement all kinds of data specific pattern
matching and processing for research tasks.

As it is the nature of dictionary data to consist of a large amount of individual entries, applying
pattern matching and transformation tasks require a great deal of transparency. Researchers
performing these tasks need to be able to identify which rule is applied to which entry in what form
and see what modification an entry will receive. To achieve this transparency our data processing tool
collects information about all modifications applied to each individual data record and presents them
in a large list that can be filtered by some criteria. Thus our tool aids in debugging by allowing insight
into every details of the tasks a researcher is going to perform.

4 Processing of Pali Dictionary Data

Prior to any processing we converted the original digitized dictionary entries we received from the
University of Chicago into JSON data structures and inserted them into our dictionary server. In the
next sections we present our processing steps applied to the individual dictionary data records within
the infrastructure described above.

4.1 Transliteration of Lemmas

As it turned out the digitized version of the Pali Dictionary we received was not entirely in accordance
with the current transliteration conventions. Therefore to be able to use the Pali dictionary for research
the lemmas had to be adjusted.

To achieve a valid transformation we first had to verify that no accidental errors had been
introduced by the original digitization process done by the Pali Text Society. We therefore
implemented an alphabet model that follows the old transliteration schema used to represent glyphs of
the Sinhalese alphabet. For these single letters one or two Latin ligatures (with diacritics) are used
today. Modelling each word with the original alphabet is mandatory to be able to identify possible
errors. We checked all lemmata against our model and were able to identify 14 of 16280 lemmata
violating our model. The errors could be identified to be printing errors or misinterpretation during
digitalization and were then corrected manually before continuing processing.

The next step was to perform substitutions of the letters ‘ŋ’. To ensure correct processing this was
not done on the Unicode based character representation of the data directly but on the original letters
modelled by our alphabet model. Substitution is performed on that basis taking the phonetic context
into account as necessary:

ŋ followed by j, c, h or e => ñ
ŋ followed by k or kh => ṅ
ŋ followed by d, dh or n => n
ŋ followed by m, p, bh or b => m
ŋ followed by s => ṃ
ŋ followed by ṭ, ṭh => ṇ
ŋ followed by l => l
ŋ followed by v, y or r => ṃ
ŋ followed by a, e, i, o, u, ā, ī, ū => ṃ
ŋ not followed by any character => ṃ

67

5 Pattern Recognition and Enriching Dictionary Entries

5.1 Pattern Matcher

In processing Pali we had to take our own pattern matching approach in order to avoid problems
encountered with regular expressions in C#. We found that some Pali specific diacritics did not get
processed as the official regular expression syntax specification suggested. To overcome these
limitations we implemented an own pattern matcher.

Nevertheless we were not interested in dealing with space characters as they do not provide any
valuable information to our pattern recognition tasks. And for easy communication with Indologists a
pattern syntax was required that would be easy to understand. So these requirements specific to our
field of application were taken into account in building the pattern matcher.

The pattern matching system we designed does not process character streams but token streams.
The system can distinguish between the following concepts:

• A whitespace – which is automatically left out during tokenizing the dictionary articles
• A word – which is an alphanumeric character including all diacritics
• A delimiter – which is any kind of character not being to a word or whitespace

As we aimed for an iterative process in order to identify relevant pattern it helped greatly to be able

to express patterns to be matched in the form of expressions that are easy readable by non-computer
experts. Our syntax supports the following forms:

• Match a specific word token
• Match any word token
• Match a specific delimiter token
• Match any delimiter token

Examples of this syntax are given in the next sections which address specific pattern recognition

tasks individually.

5.2 Cross References

As Pāli grammar is not standardized to the same extent as, e.g., Sanskrit, various alternative word
forms occur. The Pali dictionary at hand addresses this problem to some extent by containing several
versions of some lemmas. These entries then contain purely textual information of a reference to the
dictionary entry having more information about the selected lemma. In the Pali dictionary this is
expressed in forms like this:

... in general see buddha ...

Such a form is matched by a pattern like this:

'in' 'general' 'see' < 'b' > W*! < / 'b' >

The pattern specified is easy to understand: This is a sequence of individual patterns matching

specific tokens. Words in inverted commas express an exact match of a single word. “W*! ” indicates
that a word of any kind is expected here (and it should be available for further use after a match has
been found). Other characters match specific delimiter tokens.

Two real world examples of dictionary entries:

anumatta
 see a ṇu° .

ano
 is a frequent form of comp<superscript>n.

68

 </superscript>an--ava , see ava .

As there exist various different forms of patterns like this in the dictionary specifying multiple

possible variants was required. Within an iterative process we were able to identify 46 different kinds
of patterns which we could make use of for automatic identification.

To further help manual processing of the dictionary we implemented a verifier that tries to identify
the lemmas each cross reference refers to within the dictionary. This is done by direct dictionary
lookup. References that do not seem to point to a valid lemma are listed together with candidates
based on Levenshtein distance for manual processing later by Indologists.

5.3 Extracting word class information

As we aim for lemmatizing and part of speech tagging of the Pali Canon, in the long run having
information about the word class of each lemma is mandatory. Therefore we used pattern matching to
aid the generation of data for this purpose.

Our algorithmic approach of classification is basically performed in three steps described next.
Word class information mainly manifests itself in expressions enclosed in rounded brackets. E.g.:

 ap āra
 (nt.) [a + p āra] 1. the near bank of a river ...

 s īhaḷa
 Ceylon; (adj.) Singhalese ...

 susira
 (adj.--nt.) [Sk. śuṣira] perforated, full
 of holes, hollow ...

 p ītika
 (--°) (adj.) [fr. p īti] belonging to joy; ...

Unfortunately round bracket expressions are used in different semantic contexts within dictionary

entries. In a first step we therefore extracted all content enclosed in round brackets and identified
expressions that represent word class information. Though an old printed edition of the dictionary
contained a clear definition of these word class expressions used we encountered some variety of
writing, of combination and of misspelling: Building a list of relevant expressions was the only way to
address all phenomena in sufficient quality.

Secondly we know from Pali grammars that verb lemmata typically end with “-ti” in the dictionary.
But not all lemmata ending with “-ti” are verbs. Therefore we implemented the following algorithm
that was able to clearly identify lemmata correctly as verbs:

for all lemmas do
 if lemma does not end with “-ti” -> reject it
 if bracket expression in data matches a pattern cl early
 classifiable as non-verb -> reject it
 if entry does not contain the (English) word “to” -> reject it
 otherwise -> recognize this lemma as being a verb

After having identified verbs successfully we then were able to address dictionary entries of other

word forms purely according to expressions in round brackets. The following list gives an overview of
how many kinds of patterns have been identified and were involved in this process:

Word Class Number of Patterns
adjective 26 incl. one misspelling
indeclinable 1
adverbs 4 incl. one misspelling

69

pronouns 1
numerals and ordinals 2
nouns 8

6 Word class recognition

In order to evaluate the importance of the dictionary, we designed the following task: for each word in
a manually tagged subset of the Pali Canon, we tried to recognize the word class using a generation-
based and a heuristic approach. We then compared the results of both approaches.

For the generation-based approach, we generated all possible word forms, including morphological
information, for every word in the dictionary using the morphological generator. The generator uses
paradigms to generate regularly inflected word forms. Furthermore, the generator uses the dictionary
to look up morphological information about a word and, if present, uses this information to restrict the
generation to grammatically adequate forms. However, since the dictionary entries do not always
present this information, or because it’s not always possible to easily extract this information, we over-
generated in cases where no information can be retrieved from the dictionary. We also generated rare
forms according to information presented in available grammars on Pali. In total, we were able to
generate 11447206 word forms for all words. This averages to about 702 word forms per dictionary
entry. In compact notation, this resulted in about 1.5 GByte of data.

As we generated possible morphological forms from lemmas, we then reversed the data structure to
arrive at a morphological form lookup table. We saved these results locally for later efficient lookup.

As a test corpus for our word class recognition task we used a manually annotated set of 500
sentences (about 4600 words). These sentences have been extracted earlier in the SeNeReKo project,
choosing three consecutive sentences at random from the whole Pali corpus. This preparatory step has
been started about a year ago to assist future computational linguistic tasks (a further 500 sentences are
work in progress). Thus, the data is representative of the whole corpus and is not biased.

We then stepped through our corpus and checked for each word whether one or more of the
generated forms corresponded to the word at hand. If this was the case, we retrieved the relevant
entries including all attached morphological information. From these entries, we then retrieved the
word class information for the word.

For the heuristic approach, we built a morphological analyzer. The analyzer can only rely on its
internal heuristic for guessing the word class of a word. The heuristic is ending based and uses
paradigms to determine to which word class a word could belong. The analyzer tries to identify and
separate possible endings occurring in different paradigms. Based on these analyses, the word class is
guessed.

Before we could start the experiment, we had to map the word classes used by the
generator/analyzer and the word classes used in the annotated corpus onto a common set of classes.
The reference corpus uses a fine-grained tag set that’s standardized for use in more than one corpus in
the SeNeReKo project. The dictionary uses a simple tag set, which has been created independently of
the SeNeReKo tag set many decades ago. The tag sets follow different principles and goals. It is
therefore not always straightforward to map one tag set onto the other.

We tried to assign each word of the reference corpus a word class and checked the results against
the manual annotations. The results of this algorithmic output are evaluated in the result section below.

7 Discussion

7.1 Performance of the processing environment

As a server we use an older 32 bit Linux machine with an Intel Core Duo at 2.4 GHz and 4 GByte of
memory which runs the dictionary server with its data base.

Due to bulk processing of requests we were able to bring down the average time for a single write
operation to about 0.7ms per dictionary entry from a client’s point of view under ideal circumstances.
In a real world application such as our data processing tool this enables us to process all 16280
dictionary entries within about 10 seconds if no changes are applied and to about 20 seconds if all

70

entries must be read and written back to server. We found this delay very acceptable during our design
and implementation of individual processing units for the dictionary data.

The following performance measurement chart for data write requests gives an insight into how
performance is affected by network latency:

(If the above chart is displayed in black and white: The top line represents the client duration

measured per operation, the bottom line measures the server duration per individual insert operation.)
This measurement is taken by inserting all Pali dictionary data 10 times with different chunk sizes

and averaging the duration as measured by the test software. For convenience the server performs
performance measurements on his own and sends his results 9together with the response to the client,
so that such a kind of analysis can be performed easily. The difference between both measurements
indicate the overhead introduced (mainly) by network latencies.

Please note that the chart starts at a chunk size of 10. This is for a reason: It turned out that lower
values will introduce significantly more delay.

7.2 Results of pattern matching

Our attempts to process the 16280 dictionary entries resulted in being able to recognize word forms in
10016 of all entries. This is about 61.5% of all dictionary data.

Regarding cross references we were able to extract 457 cross references to existing lemmas within
the dictionary, 52 references to lemmas not in the dictionary and 75 references containing only
incomplete information and cannot be resolved automatically.

At first hand these values do not seem to be very high. But as we can only rely on clearly
identifiable patterns within the dictionary entries these values are even better than we hoped at the
beginning of our work. It has been clear right from the start that a greater amount of dictionary entries
would need to be the centre of manual work in the future by Pali experts: Many entries simply do not
contain any information that can be recognized by the algorithmic approaches taken.

As Pali is a largely dead language we have to consider that our data processing described in this
paper is a one-time task. The only relevant dictionary at hand is the one we used, containing exactly
those words we have. We successfully identified word classes for lemmas leaving 6264 for manual
processing for our Indological colleagues. If even more time would be spent in finding even more
patterns within the dictionary entries, we might improve our performance by a few percent, but there is
no real reason to do this: We have come to a point where finding more patterns will take considerably
more time than identifying word classes and assigning them manually to the dictionary entries.

7.3 Results of Word Class recognition

We tried to recognize word classes based on the generation-based approach and on the heuristic
approach as described above. We faced the problem that word forms can be analysed in more than one
way, even by using paradigms, which represent regular inflections. This degree of ambiguity cannot
be resolved currently due to the particularities of Pali, such as a high degree of homonymy.
Furthermore, different paradigms yield the same surface form, even though they belong to totally
different word classes.

Therefore, we evaluated the resulting data in two different ways. First, we used “is-any” matching.
If a test corpus word has been assigned more than one word class by our algorithms, we consider the

71

word classes to match if the two sets share at least one common element. This way we address the
problem of ambiguities. Second, we used “exact” matching. In this case, we consider the result to be a
positive match if and only if the proposed word class corresponds exactly to the assigned word class.
By using this approach, we try to determine the degree of unambiguousness with which we can
propose a word class. If a word is assigned a word class and the program suggests two word classes, of
which one corresponds to the assigned word class, we count this as a failure.

Please note that, since it’s not always possible to distinguish clearly between nouns and adjectives
in Pali, we aggregated these word classes into one class. To this class we also counted words tagged as
ordinal adjectives, since they are inflected like regular adjectives.

The following tables illustrate our results:

“is any” matching
 Generation based Heuristic
Noun-adjective-
ordinalAdjective

63.30% 99.96%

Numeral 61.04% 76.62%
Pronoun 82.75% 88.57%
Verb 51.24% 63.37%

As you can gather from the table, the performance of the word form generation based approach did

not match the performance of our heuristic approach in the first experiment. Further investigation
showed that this is mainly due to the fact that not all necessary word forms encountered in the
reference corpus could be generated. There are several reasons for this: First, the exact ways to
generate word forms are not yet completely covered by literature and in some areas are still under
research: e.g. at least regarding verb forms, there is still ongoing research. Second, our generation
process was not able to handle irregular forms well because this information is not yet represented in
the dictionary. This data will probably be entered by Pali experts next year. Third, most of the forms
we could not recognize are sandhi and other compound forms. This is a task the generation process
cannot handle well in general. A heuristic approach does not encounter these problems.

To better judge our algorithms, we therefore evaluated the results only for word forms that could be
addressed by these algorithms. The following tables give an overview about these results:

“is any” matching (processable words)

 Generation based Heuristic
Noun-adjective-
ordinalAdjective

97.31% 99.96%

Numeral 81.03% 76.62%
Pronoun 86.61% 88.57%
Verb 76.25% 63.37%

As you can see, on word forms that could be processed, both approaches work similarly well.
With the current state of the dictionary, these results are as good as can be. Please note that while

the heuristic approach must be considered to be final the generation based approach will improve over
time as the dictionary will be improved by the Pali experts in the next years.

Our “exact” evaluation operator revealed that word forms in the reference corpus that uniquely
belong to a single word class can be recognized much better by the generation based approach than by
the heuristic approach. Interestingly, though we are still lacking information about irregular verb
forms in the dictionary, we achieved up to 60.37% precision on verbs in exact word class recognition,
while the heuristic approach surprisingly did not succeed very well.

The approaches we took can surely be improved. However, these approaches rely heavily on a
dictionary, which is more detailed and even more complete. Pali experts will provide this data in the
future but this is an ongoing process which will take a few years.

72

7.4 Conclusion and Future Work

In this paper we have addressed the task of extracting cross references and word class information
from dictionary entries in a Pali dictionary. For this task as well as for future computer linguistic tasks,
we have built an infrastructure suitable for data management and processing. We have experienced
that even if the individual articles are not written in a consistent and clear way, some information still
can be extracted. We therefore propose that similar approaches might be taken with dictionaries of
other dead languages as well in the future based on the technical infrastructure we created.

We tried to complement our approach with taking the English translations, contained in most of the
dictionary entries, into consideration. Unfortunately this did not work well due to the nature of our
data: Most of the dictionary entries do contain a discussion of a lemma in English, but as the
individual dictionary entries don’t follow a clearly defined structure and even discuss various related
words within these entries it turned out this approach is too incomplete and too error prone to be
usable in practice.

We found the processing environment to be of great help in order to shorten the time consuming
manual processing of data. Three aspects we like to point out in this context: The concept of having an
integrated development environment that takes data management work off the shoulders of researchers
and allows writing small units of code for processing turned out to aid in this process. Furthermore the
transparency given by the system about processing details for every single word helps greatly to avoid
mistakes and therefore saves time of researchers.

Our experiment concerning word class recognition showed that the dictionary is essential. While the
dictionary data is still relatively incomplete, we were able to get good results. Future work needs to be
done in this area, especially the correction of lemmas and part of speech tags in the future. However,
this is a future task that goes beyond the scope of this paper.

A custom dictionary editor has been built that connects to the dictionary infrastructure at hand. With
this tool our Indological collegues intend to perform the unavoidable manual improvement in the next
years. If this process is completed at some point in the future we intend to address lemmatizing and
part of speech tagging again, something that can not yet been done to a fully satisfying extent right
now. Nonetheless, as our word class experiment showed, we were able to achieve good results despite
the problems encountered. It is to be expected that with the improvement of the dictionary, the results
will also improve in the future.

Reference

Alfter, David. 2014. Morphological analyzer and generator for Pali.

Critical Pāli Dictionary. Web.

Collins, Steven. 2006. A Pali grammar for students. Chiang Mai: Silkworm Books. Print.

Geiger, Wilhelm. 1943. A Pali Grammar. Pali Text Society. Print.

Helwig, Oliver. 2009. SanskritTagger, a stochastic lexical and POS tagger for Sanskrit.

Stede, William and Davids , Rhys. 1997. Pali-English Dictionary. 2nd ed, Motilal Banarsidass. Print.

Pali Text Society. Web.

Thera, Nārada. 1953. An elementary Pāḷi course. 2nd ed. Colombo: Associated Newspapers of Ceylon.
BuddhaNet eBooks. Web. N.d.

73

